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AGEING VISCOELASTIC BODIES* 

The results in /l, 2/ on the stability of growing viscoelastic rods in 
finite and infinite time intervals are generalized. 

1. Formulation of the problem of the stability of a growing viscoelastic 
body. We consider a body fabricated at a time t = 0 and occupying the domain 61, in three- 
dimensional space. Continuous growth of the body occurs in the time interval [to,t,], where 

t, 20. The law of growth, i.e., the dependence of the body configuration on time, is con- 
sidered to be given. The time of generation of a material particle with coordinates x = 1%) 
(i = 1,2,3) is denoted by r* (x). 

The body is subjected to mass loads F and surface loads g applied to the body boundary 

S, (0, F = {Fi}, q = {gi). Note that the body surface through which growth of the materialoccurs 
is part of the surface S,. On the other part of the body surface S, (t) we are given the dis- 
placements, which to be specific, we set equal to zero. We will later assume that the type of 
boundary conditions does not change during body fabrication. 

Displacements ui (t,x) governing the unperturbed trajectory motion appears in the body 
under the action of external forces. We will henceforth assume the growth of the body to occur 
fairly slowly and the displacements ui to be slowly varying functions of time, whereupon 
inertial effects can be neglected. 

We assume that during the growth of the body its configuration turns out to be different 
from the designed one (for instance, the longitudinal axis of a growing rod actually turns out 
to be curved instead of straight (designed)). This means that the material point coordinates 
(when there are no external loads) are xi + avio instead of xi. We consider Vi0 to be fairly 
small. The parameter a is introduced provisionally, it can be set equal to unity. 

In such a body the displacements will equal ui* = U‘ + c&vi. 
We will call the body motion governed by the displacements ul*perturbed and the displace- 

ments avi the desired perturbations. 
We introduce the displacement norm (V(t) is the body volume at the time t) 

II u(t) II= (A, ui tt7 x, ui (ty x)dV)“’ 

Here and henceforth, summation is over repeated subscripts. 

Definition. The unperturbed motion of a growing viscoelastic body is called stable in an 
infinite time interval if for any number A >0 as small as desired there is a number 6= 

6 (A)>& such that for any initial displacements pviO satisfying the inequality allv'll (6 
and displacements au, correspondingtothis perturbation will satisfy the inequality a(Ivll< 
Afor O,<t<m. 

If the motion of the growing body is investigated in a finite time interval IO, T1 and a 
critical value is given for the displacement norm II v II** then it is possible to speak of a 
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critical time 1* by defining it as tile time of first attainment of the displacement norm 
a II v II by the quantity 11 Y II*: a max 1) v (t)II <II VII*, 0 < 2 < t*, where 05 11 v (t*) II :-= II v /I*, 

We call a body stable in the time interval IO, Tl if t* > T. 
Assuming the deformations tobe small, the equations of state for a material are t,-iken 11; 

the form /3/ 

The relaxation kernels satisfy the conditions 

06: J&k,< &,(tr 7, x) (4.2) 
e 

The dependence of Eijklr Rijrl on not only ?* (x) but also on x means that the body can 
be inhomogeneous. 

It is easy to see that the deformations at points of the body at a time t > z* (x) are 
determined by the expression 

Et] (t, X) = eij” (X) -f- t?ij (t, X) - eij (‘?* (X), X) 

e,j(t,X)=~{lu:j(t,X) +UT,i(1,X)] --a(VI,j + uY,i)-t- 

14, i (t, X) U;C, j (tv X) - aa&, i4, ,]I 

eij(2*(X),X)=eij(t,x) when t=z*(x) 

etj" fxf 
is the initial deformation of the material particle attached to the body at time X*(X). 

If the body growth is produced by particles without preliminary stretch then eijO (x) E 0. 
Note that the stresses @ijO (4 in the attachable particles, due to the strains 

0 should be consistent with the boundary conditions on the body surface. 
eij' (x) + 

Assuming the external loads are conservative, we write the functional /4/ 

s Fiui*dV - s qpj* as 
VW Sq(l) 

We vary 3 with respect to the displacements vi corresponding to the time t (the displace- 
ments ui coxresponding to the unperturbed motion are not varied). 

The condition of stationarity of the functional 3 is that its first variation equal zero 

63 = a&3’ + a%Y = 0 (3.3) 

Here 63', 63" are expressions in the variation 63 for appropriate degrees of the 
parameter a. 

Because of the equilibrium of the body in unperturbed motion the equality 63' = 0 should 

hold. Consequently, it follows from 11.3) that 

63" = 0 (1.4) 

We will henceforth confine ourselves to examining the case when the displacements ui in 

the unperturbed motion of a viscoelastic body are small and can be Eouncl from the equations of 
the linear theory of growing media. Then (1.4) can be represented in the form 

where sij are stresses in the unperturbed motion and 8vi are variations of the displacements 
vi. 

We note that (1.5) is a convenient apparatus for determin.ing the characteristics of the 

State of stress and strain of growing viscoelastic bodies that is a generalization of the Ritz 
method as it applies to the bodies mentioned. 

2. The stability of a body in a finite time interval. We take the displacements 
ui as variations of the displacement SVi : Then (1.51 can be represented in the form 

(v',Ev')=-(v',uv')-(V',UV"')i_(V',RV') (2.f) 

(V’* EV’)= J EijrPk, jL’k,L dV, 
v 

(V’, UV’) c 5 UijVk, ,Vk.j dv 
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(v’,ov”)= S Ui#‘;, h,jdV, 
V 

(V’, Rv’)= $ vi, j(RijklUb, I) dV 

We assume that the external load is a single-parameter one, whereupon we can write ojj = 

-boip, p = const. 
We introduce the vector V’ with the components Vij. We define the scalar product of two 

vectors VI', va' and the norm of the vector v' as follows 

We consider the loads such that the minimum eigenvalue h, of the equation 

(v', Ev') = h (v', u%') (2.2) 

is positive (h,> a> 0) for any time tE [O, Tl. 

By expanding the vectors v'(t) and 9’ in a complete orthogonal system of functions 

normalized "with weight ai,"." corresponding to the eigenvalues hi of (2.2), we obtain the 

following relationship from (2.1): 

G - B) II v' II a Q B II v’ IllI v" II + (v’, Rv’) (2.3) 

Predefining the functions IJ~,~(z,x) for O,<z<r* (x) as ~i,j (7, X) = 0 and taking con- 

dition (1.2) into account, we estimate the right-hand side of the inequality (2.3) as follows: 

;t 

(~'3 Rv') Q (I v'(t) (\ s R 0, z) II V'(T) II dt (2.4) 
0 

R (t, .c) = supx R,,,, Rm,, = Rm,, (t - z* (X), z - T* (X), X) 

where R,,, is the maximum eigenvalue of the matrix R&r,. 

Taking (2.4) into account, we have from (2.3) 

:a, - B) II v’ (t) II < B II vu’ II + j R (t, r) II v’ (.t) \I dz 
0 

(2.5) 

An estimate of the norm II v’(l)1 is found from the integral inequality (2.5), as can be 

done, say, by using the Gronwall-Bellman lemma. On the basis of an imbedding theorem for the 
norm of the body displacement perturbations II v (0 II the relationships (( v (t) II <C 1) v’ (t)II 
holds, where C is the Korn constant /5/. 

An analysis of the stability of a growing body in a finite time interval c/2/, for 

example) can be performed by using the estimate of the norm II v w II obtained in this manner. 

3. The stability of a growing body in an infinite time interval. It is 

assumed further, that starting with the time t, the body dimensions and the loads acting on 

it remain invariant in time while the stresses in unperturbed motion oij(t,X) tend to limit 

values equal to cij(x) as t-n;. 

relaxation kernels RIjkl 

It is also assumed that the elastic moduli Eilkl and the 

of the material satisfy the additional conditions 

lim Eijk~ (t - t* (X), X) = EPjkl (X) 
t-m 

SSUp(RPjll_RR;jrr(l,r,x)1d~-O as T+w 
T x 

Theorem. When the formulated conditions as satisfied, a growing body is stable in an 

infinite time interval if the inequality h,*> p holds. Here h,* is understood to be the 

minimum eigenvalue (a,* > c>O) corresponding to_ the equation 

(v’, EOV’) = a (v’, o*v’) 

(V’, E”V’) = 5 EYjklVi, jvk, I dV (V’t a*v’) = 1 aij*Uk, $k, j dV 
u u 
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(U is the body volume for t >- 11, IJij (X) -: -pfSij* (X)). 

The proof of this theorem literally repeats the proof of analogous stability theorems for 
an inhomogeneously ageing viscoelastic (not growing) body /6/ and a growing rod /2/. 

4. Examples. Let us consider two examples that illustrate the importance of takrng 
account of the growth factor for a correct estimate of the serviceability of growing bodies. 

Example 1. We consider the problem of the plane state of strain for a body extending 
infinitely in the direction of the x3 axis (Fig.1) and growing continuously in horizontal 
layers at the rate w(t) = w&l?*. The body material is considered tobe isotropic, elastic and 
ageing. Poisson's ratio is constant with time but the shear modulus is governed by the ex- 
pression (G,and p are constants) 

G=G,(l--exp[--p(t-?*(5,))]}, -r*(z)=-$(I-$rr) 

We assume that a uniaxial state of stress 

(Jr1 (t, zr) = --y [h (t) -zJ = --p, v = const 

is realized in unperturbed motion. 

Fig.1 

We assume that during growth the side 

the vertical by a small angle CP~(U~'= qOzt). 

under the action of a load. The equations 

Fig.2 Fig.3 

edges of the body received a small deflection from 

Additional displacements v,,v~ appear in the body 

t [G (01,~ + uzJ1.a - (PI,L),I = 0 (4.1) 

follow from the variational Eq.(1.5). 

The conditions 

z1 = 0, ", = Ua -= 0; z1 = h, 011 = 0, lY,z = (I 

are satisfied on the upper and lower edges of the body. 

Here si, are stress perturbations. 

We assume the body to be stretched in the direction za, whereupon the boundary conditions 
on the side edges can be discarded. 

We will seek the solution of (4.1) in the form vl= ul(zl),v,= uz(zl). Then 

We find the solution of the second of these equations. For .z,= h the equality Gv,,,- 

P (%,I + vpo)= 0 should be satisfied, and taking it into account we write 

The denominator of the integral can vanish for 4=0 at a certain time t, that is found 
from the equations 

G, [I - exP (--pt+)l = yh (t+), h (t+) = woq-’ Ii - exp (-qt+)l 

The unperturbed motion of the body is obviously stable in an infinite time interval only 
when for any time t>0 
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I - e-P* > yw,G,-'q-1 (1 - CT*) (4.2) 

Otherwise, it is possible to speak of the stability of the same motion in just a finite 
time interval. Thus, for a fixed value A of the limit deflection of the upper edge of the 
body in the direction of the z1 axis, the critical time t, for the function u, to reach the 
value A will be less than the time t,. As is seen from (4.2), the characteristics of its 
growth rate play a significant role in estimating the stability of even an elastic body. 

Example 2. Let us consider a rectangular body that is infinite in the direction of the 
zII axis and grows continuously in horizontal layers in the direction of the z1 axis at a con- 
stant rate w0 (Fig.2). The body material is isotropic, viscoelastic, ageing with an elastic 
modulus that is constant in time, and Poisson's ratio Y. The relaxation kernel for the uniaxial 
state is taken in the form (v, b,A,C are constants) 

R” - = - & (0 (T-r’(q)) (1 - ,3(*-Q]) 
E 

o (T - T* (q)) = C + A exp [-b (z - 2' (a))1 

We will consider that a uniaxial state of stress o,,(t,z,)= --p is realized in the unper- 
turbed motion. 

We assume that the side faces of the body have a symmetric deflection by an angle 'p,,(u,"= 
'P&%la) relative to the *axis. Perturbations of the displacements vl,va that are determined 
from (4.1) in which the operators E(1- R),G(l-RR) should replace E and G, appear under the 
action of loads. The boundary conditions 

=I = 0, h, %=Ph+~l”),l v*=o (4.3) 

58 = f a, 022 = 0, (TSl = 0 (4.4) 

are satisfied on the body edges. 
Here aij are understood to be stress perturbations. 
The relationship (2.5) takes the form 

(l--R('))li"(")ll~X(')llv"'ll+~1(1(1~~)IY'(r)lI~~ 
0 

(4.5) 

Rl(t,T)= d!$_%, x(t)=&, fl= -$- 

11 vO’ 11 = ‘PO {2/&h (t)[h* (t) + a21)“’ 

B (h) is the critical value of the parameter B for an elastic body at a time t. 
The solution of the homogeneous system of Eqs.(4.1) for an elastic body undertheboundary 

conditions (4.3) and (4.4) are written as /7/ 

~1~ = (klc, sh k,X, + kBca sh k,X,) cosX, (4.6) 
u, = (k,acl ch k,X, + c, ch k,X,) sin X, 

k>*= I- 9 fi, k&l- fj, p = &, , Xn = ;z~, n = I,2 

The value of the parameter b1 is determined from the characteristic equation that follows 
from (4.4) after substituting expressions (4.6) therein 

4k,ka th k, a = (2 - fl)* th k,a, a = xalh (4.7) 

A graph of the change in fil with time is shown in Fig.3 for p = 0.5. Note that 

h = wat, a = n/(wt), w = w,/a 

Here the graphs Ild (t)ll-t are represented for a body whose material is characterized by 
the following constants: C/G=0.075, A/G=0.75, y =0.02 l/day, b=0.005 l/day for p =mO.l. Curve 
1 corresponds to the rate w=O.Ol dav-1 and curve 2 to 0.05 day-l. 

of 

1. 

2. 
3. 

4. 

5. 

The examples considered indicate the substantial influence of the growth rate (fabrication) 
the body on its stability and on the magnitude of its displacements. 
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THE ORBITAL GEOMETRY OF JUPITER'S MOONS* 

M.KH. KHASANOVA 

Qualitative geometrical and differential-geometrical characteristics of the orbits of 

the moons of Jupiter in its gravitational field are studied (uptothe fourth zonal harmonic). 

Eliminating the cylical coordinate from the energy integral, we determine the domains of 

possible motions of the moons. The boundaries of these domains are given in the pz plane by 

the Hill curves 

W (p, i) I- h := (1 (W = (I - C2/(2p*)) (2) 

Here W is the modified force function, p and z are the cylindrical coordinates of the 

moon, V is the gravitational potential of Jupiter /I/ and C is the area constant. The Hill 

boundary which is usually considered, derived from the energy integral in its initial form, 

describes approximately the domain of possible motions in the form of a spheroid, while in 

the present case the domain in question will be a spheroidal layer. 
Let us replace the force function in (1) by its expression /2, 3/ 

in which f is the gravitational constant, M is the mass of Jupiter, R is the mean equatorial 

radius, r is the planetocentric distance of the moon, 'p is the planetocentric latitude, Ik 

are dimensionless constants, and Py(sinqp) is a k-th order Legendre polynomial. When Ik :: 0, 

the equation of the Hill curve takes the following form: 

r. = n (1 I- 1/l - cos2 i scc~ ql, cm i = Cj(fMu)‘,2 

where a and i denote the major semi-axis and the inclination of the Keplerian orbit. In the 

case when I,fO, we assign appropriate values to the constants Ik to obtain the domains of 

possible motions, which can be used to assess the effect of the asphericity of Jupiter on the 

orbits of the moons. 

Retaining in the gravitational potential of Jupiter only the second and fourth zonal 

harmonics, we shall write the equation of the Hill curve (1) in the form (I is the eccentricity 

of the orbit) 

r1= ~~(2---33rls), rl= I%,*(2 1-26 (I+~))--Q(l--.a)(l -tE) 
8oS(5, rl) r0S (6, ?) 

cz = 'izfMa (1 - e2) (1 i- E), h = ?-,/a, S (5, 3 = '1, I(1 - e*) (1 + 
5) - b (1 -t ~)1 

l) = roe %$I, E = cos 2i 

The geometrical characteristics of the motion of Jupiter's moons were studied using the 

values of the astronomical constants given in /l, 3/. Figure 1 shows the domains of possible 

motions of Jupiter's moons and Fig.2 shows the perturbations in the radius vector of the 

boundary Hill curve caused by the asphericity of Jupiter (the notation is the same as in Fig. 

1). Figure 1 shows that the Hill curves are ovals. Since some of them intersect each other 

collisions between the moons cannot be ruled out, 
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